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Purpose 
Statistical methods play a key role in all tasks concerning 
data: collection, analysis, interpretation and visualization. 
Therefore, the use of statistics is ubiquitous throughout 
an environmental project life cycle and supports both the 
objective of advancing scientific understanding and the 
management goal of making decisions. For example, 
during remediation and monitoring stages, trend analysis 
is often used to evaluate whether chemical concentrations 
in groundwater are increasing or decreasing over time. 
Regardless of the media (i.e., groundwater, soil, etc.), 
chemical concentration data sets are inherently variable, 
and statistical methods provide the tools needed to 
understand the behavior and patterns of these chemicals 
over time and space.

This fact sheet provides a condensed selection and 
discussion of important statistical methods used for the 
analysis of groundwater and soil data at Navy and other 
federal sites. Statistical analysis of groundwater and soil 
data can present challenges during different stages of 
the project cycle, such as planning, implementation, and 
decision making. Challenges can be related to:

• �The inherent nature of environmental data, such as 
censored values (i.e., less-than or non-detect values), 
small sample sizes, unrepresentative or biased samples, 
skewed data distributions, measurement error, etc. 

• �The selection and application of statistical methods to 
answer questions that are specific to the site and/or the 
objectives of the investigation. 

This fact sheet is intended to elucidate some of these 
challenges and to promote the proper use, application and 
interpretation of statistical methods. The following topics 
are discussed:

• �When is it appropriate to use statistics?

• Which statistical methods can be used for groundwater 
and soil data sets?
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While this fact sheet provides definitions of statistical 
concepts and their application in environmental projects, 
it is not intended to replace other detailed statistical texts, 
guidance documents or software. Additional resources  
on environmental statistics are provided at the end of  
this fact sheet.

When is it Appropriate to Use Statistics?
Before conducting any statistical evaluation, data must be 
reviewed to ensure that the right type, quality and quantity 
of data are available. Systematic planning helps to ensure 
that the data collected are of sufficient quality to be  
used in statistical evaluations. This planning process  
is based on guidance for establishing data quality 
objectives (DQOs) as provided in the Uniform Federal 
Policy for Quality Assurance Project Plans (UFP-QAPP), 
along with additional U.S. Environmental Protection 
Agency’s (USEPA’s) resources (USEPA, 2005, 2006a and 
2006b). The following considerations can be used to  
help determine whether the data are usable for  
statistical evaluations:

Sample Design. Data should be collected using 
systematic planning and incorporate a statistical (or 
probabilistic) sampling design. In particular, when the 
study objectives involve estimation or decision making, 
some form of probability sampling (e.g., simple random 
sampling, stratified sampling, etc.) should be selected 
to ensure that the data are representative of the target 
population, e.g., site and background (USEPA, 2000). Data 
collected using judgmental sampling, where the site expert 
designates where and when samples are collected, should 
not be used for statistical evaluations because the results 
will be biased and lead to erroneous conclusions. 

Sample Size. To conduct defensible statistical evaluations, 
a sufficient sample size (number of usable data points) 
needs to be collected from the population of interest using 
appropriate DQO processes. As a general rule, for both 
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parametric tests (i.e., tests that assume a data distribution, 
for example, the normal distribution) and most nonparametric 
tests (i.e., tests that do not assume a data distribution), the 
larger the sample size, the greater the power and the smaller 
the decision error risk (false positives and false negatives).  
To minimize decision error risk, minimum sample sizes should 
be determined before data collection, if possible, as part of 
the design process. However, more often than not, the data 
have already been collected without using a DQO process, or 
due to resource constraints, it may not be possible to collect 
as many samples as determined by using a DQO-based 
sample size formula (ITRC, 2013). Under these circumstances, 
guidance documents (e.g., Navy, 2002; Navy 2004; ITRC, 
2013; USEPA, 2009) recommend a minimum of  
10 independent observations for most statistical tests. 

Historical Data. Historical or pre-existing data may be used 
for statistical evaluation, but the historical data must be 
checked for sufficient quality compared to more recent data. 
For example, changes in sample collection and analytical 
methods over time can introduce bias and higher levels 
of uncertainty in chemical measurements. These biases 
can affect the results of a statistical evaluation, leading to 
erroneous conclusions. Exploratory data analysis (EDA) 
methods can also be used to assess the usability of historical 
data. EDA is described in more detail below under the 
“Commonly Used Statistical Methods” section.

Handling Non-Detect Data. Non-detect (ND) data complicate 
statistical evaluations, especially when a large portion of the 
data are ND. There are two main approaches for handling ND 
data: (i) the substitution method, where NDs are replaced with 
zero, half of the reporting limit (RL), or full RL, or (ii) the use 
of robust statistical methods that can account for ND data, 
such as, Kaplan-Meier (KM), regression on order statistics 
(ROS), and maximum likelihood estimation (MLE). Substitution 
methods are generally not recommended because it can 
lead to biased estimates. The recommended approach for 
managing ND and estimated (“J-flagged”) data (Navy, 2002; 
Navy 2004; USEPA, 2009) can be summarized as follows:

• �If ND data are infrequent (<15%), half of the RL can be  
used in place of these data without significantly biasing  
the statistics.

• �If ND data are 15% to 50%, parametric methods that 
explicitly handle NDs (e.g., MLE) or non-parametric  
methods insensitive to the presence of NDs should be  
used (e.g., KM and ROS). 

• If ND data are >50%, use a non-parametric method. 

• �Where available, estimated results less than the RL (i.e., 
“J-flagged” data), but greater than the method detection  
limit should be considered detections for the purposes of 
statistical analysis. 

Checking Statistical Assumptions. Any formal statistical 
test makes a series of assumptions about the underlying 
population from which the sample data were collected. These 
assumptions will vary depending on the objective of the 
statistical evaluation (e.g., trend analysis versus background 
comparisons, etc.) because assumptions are test specific. 
EDA/graphical methods and formal statistical tests should be 
used to verify these statistical assumptions so that accurate 
and defensible conclusions are being made about the data. 
Common statistical assumptions and the tests that can be 
conducted to verify them include:

• �Normality – Shapiro Wilk (smaller sample sizes) or Lilliefors 
(larger sample sizes).

• �Equality of variance (i.e., between different populations) – 
Levene’s test.

• �Temporal independence – sample autocorrelation function  
or rank von Neumann ratio test.

• Temporal stability – regression or Mann-Kendall.

• �Spatial variability – parametric one-way analysis of variance 
(ANOVA) or nonparametric Kruskall-Wallis.

• Outliers – Dixon’s or Rosner’s test. 

An introduction to EDA/graphical methods, regression, 
and Mann-Kendall are included in this fact sheet. A more 
comprehensive list of test-specific assumptions and 
associated methods/tests to verify them can be found in 
Appendix F of ITRC’s Groundwater Statistics and Monitoring 
Compliance guidance document (ITRC, 2013) and various 
other guidance documents.

Which Statistical Methods Can be Used for 
the Analysis of Groundwater and Soil Data?

Commonly Used Statistical Methods and Tests  

The following sections provide descriptions of some of 
the most commonly used statistical methods for analyzing 
groundwater and soil data sets. Table 1 provides a list of 
common study questions and indicates which statistical 
methods can be used to answer them. Guidance documents 
that contain the technical details for these and numerous 
other statistical methods/tests can be found in NAVFAC 
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(2002, 2004, 2010, 2012); ITRC (2013); USEPA (2009), and 
the many references therein. Note that a comprehensive 
list of software packages that implement these statistical 
methods are available in ITRC’s Groundwater Statistics and 
Monitoring Compliance guidance document (ITRC, 2013) and 
its companion web-based guidance document Geospatial 
Analysis for Optimization at Environmental Sites (ITRC, 2016).

Exploratory Data Analysis/Graphical Methods 

EDA consists of descriptive and graphical methods, such as 
summary statistics, time series plots, scatter plots, histograms, 
box plots, and probability plots. EDA can be used to:

• Check data quality.

• Qualitatively identify patterns, trends and relationships.

• �Provide information on range, spread and shape of a 
contaminant distribution.

• Detect outliers and anomalies.

• �Select the appropriate statistical method, e.g., parametric 
versus nonparametric.

• �Test underlying assumptions of a statistical test, e.g., 
normality, equality of variance, etc.

Three commonly used statistical graphical methods used for 
EDA are described below. Note that many statistical software 
packages provide options to construct censored versions of 
these plots to accommodate data sets with ND values.

 

Table 1. Statistical Methods Used to Answer Common Questions at a Site

Study Question GW Soil
EDA/Graphical 

Methods
Regression MK/TS

Statistical 
Limits

Hypothesis 
Tests

Geospatial 
Methods

What are the background 
concentrations?

Are onsite concentrations 
greater than background 
concentrations?

Are concentrations above or 
below a criterion?

When will contaminant 
concentrations reach a criterion?

Is there a trend over time in 
contaminant concentrations?

Is there seasonality in the 
concentrations over time?

What are the contaminant 
attenuation rates in wells?

How do contaminant 
concentrations change with 
distance from the source area?

Is the sampling frequency 
appropriate (temporal 
optimization)?

Is the spatial coverage of the 
monitoring network appropriate 
(spatial optimization)?

What is the extent of the 
contamination?

What is the footprint and depths 
for the treatment zone?

What is the mass of 
contamination?

What is the site-wide exposure 
concentration?
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Box Plot. A box plot summarizes the data via percentiles: the 
25th percentile (bottom of box), the 50th percentile or median 
(middle of box) and the 75th percentile (top of box) (see 
Figure 1). The length of the box represents the interquartile 
range (IQR) and the lines (or whiskers) that extend from the 
box most commonly represent 1.5 times the IQR. Any data 
that plot outside whiskers are considered potential outliers. 
The box plot gives an idea of the distribution of the data 
set, specifically, the range (minimum and maximum values), 
the variation/spread (height of box), the symmetry (sizes of 
box halves and whiskers), and the skewness (relative size 
of the box halves). Hence, they are often used to assess 
whether the data are normally distributed, to identify outliers, 
and to compare the distributions of two or more data sets. 
For example, plotting side-by-side box plots can be used 
to compare the distributions of two or more data sets, i.e., 
upgradient versus downgradient wells.

Histogram. The histogram is a bar chart that is also used 
to visually inspect the data distribution (see Figure 2). The 
data are sorted into a series of equally sized intervals, known 
as bins, and plotted along the x-axis, and the number of 
observations that occur within each bin are plotted along the 
y-axis. Like the box plot, the histogram provides a method 
to determine the shape, spread, symmetry, and skewness of 
the data. Histograms can also be used to determine whether 
one or more populations exist in a data set or to compare the 
distributions between two or more data sets, for example, site 
versus background concentrations. 

Quantile-Quantile (QQ) Plots. A QQ plot compares the 
percentiles of a data set to the percentiles of a theoretical 
probability distribution, e.g., normal distribution (see Figure 3). 
For example, a normal QQ plot has the normal percentiles on 
the x-axis and the concentration data percentiles on the y-axis. 
If the points follow a strong linear pattern, then that suggests 
the data follow a normal distribution. The observations that are 
separated from the bulk of the data may represent potential 
outliers needing further investigation. Also, significant and 
obvious jumps and breaks in a normal QQ plot can be 
indications of the presence of more than one population (e.g., 
background and contaminated populations) and/or data gaps 
due to lack of sufficient data (data sets of smaller sample 
sizes).  

Regression Analysis 

Regression analysis is a parametric method that attempts 
to determine the strength of the relationship between two or 
more variables. The most commonly used method is simple 
linear regression (SLR), which determines whether there is a 

Figure 1. Side-by-
Side Box Plots 
(Source: Geosyntec)

Figure 2. Side-by-Side Histograms (Source: Geosyntec)

Figure 3. Standard  
Normal QQ Plot  
(Source: Geosyntec)
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linear relationship between two variables, for example whether 
there is an increasing or decreasing trend in contaminant 
concentrations over time. As a test for trend, concentration 
data are plotted against time and a line is fit to the data. If the 
slope of the line is statistically different than zero, then there is 
sufficient evidence to suggest that a trend exists. If the slope 
is negative, there is a decreasing trend, and if the slope is 
positive, there is an increasing trend.

The slope also quantifies the magnitude of the trend, i.e., how 
the mean concentration changes over time. In the special 
case where the log concentration is plotted against time, 
also known as a log-linear regression or first-order decay 
rate model, then the magnitude of the slope is an estimate 
of the bulk attenuation rate, which can be used to estimate, 
cleanup timeframes (see USEPA, 2002 for more information on 
estimating bulk attenuation rates). Other applications of SLR 
include evaluating behavior in concentrations with increasing 
distance from a source and assessing the correlation between 
two contaminants (i.e., two metals in determining background). 
Other regression models are generally necessary to detect 
other non-linear relationships, such as cyclical trends.

Regression methods require the assignment of a value (e.g., 
RL, half the RL) for NDs; therefore, there should be few if 
any NDs when calculating a linear regression. Significant 
increasing or decreasing trends should be based on data 
sets with mostly detected measurements (>85%), otherwise 
a trend may be an artifact induced by changes in RLs over 
time. For data sets with <85% detected concentrations, it is 
recommended to use a nonparametric trend test, such as the 
Mann-Kendall test. Regression methods are also sensitive 
to violations of model assumptions (i.e., independent and 
normally distributed residuals with constant variance) and to 
the presence of outliers. 

Mann-Kendall and Theil-Sen Line Tests

The Mann-Kendall (MK) and Theil-Sen (TS) tests are 
the nonparametric alternatives to SLR for detecting and 
quantifying trends over time. MK is a rank-based test used to 
detect monotonic, i.e., consistently increasing or decreasing 
over time, trends in contaminant concentrations over time. MK 
does not require data to conform to any specific probability 
distribution and concentrations do not need to be measured at 
equaled-spaced time intervals.

MK only detects the direction of a trend; therefore, TS must be 
used to estimate the magnitude of a trend. Generalizations of 
the MK tests are also available to accommodate seasonality in 
time series and to evaluate regional trends, i.e., simultaneous 
evaluation across several wells in a region (Gilbert, 1987). 

The TS line is an alternative to SLR that can be used to 
estimate the slope of the trend line. However, the TS line 
models how the median concentration changes linearly with 
time, instead of the mean concentration. A test is conducted 
on the estimate of the TS line to determine if it is statistically 
different than zero.

Unlike SLR, results from the MK and TS tests are not impacted 
by the magnitude of extreme values. Both methods can be 
used with data sets containing NDs (i.e., <50%), but the test is 
difficult to apply to data sets containing multiple RLs; therefore, 
NDs should be substituted with a value smaller than the lowest 
detected concentration, e.g., half of the minimum RL.

Hypothesis Testing 

Statistical hypothesis testing is a method of statistical 
inference, where two complementary hypotheses, the null 
and alternative hypothesis, are used to answer a study 
question about a population parameter. The null hypothesis 
is a baseline condition presumed to be true in the absence of 
strong evidence to the contrary, and the alternative hypothesis 
is the opposite condition that bears the burden of proof. Both 
parametric and non-parametric versions of these tests are 
available. The following are the three main types of hypothesis 
testing approaches:

One-Sample Hypotheses Tests. One-sample tests are used 
to compare the data to a fixed criterion, for example, the mean 
concentration of a contaminant in a compliance well to the 
MCL. These tests include: Student’s t-test, Sign test, Wilcoxon 
Signed Rank test, and the Proportion test concern. 

Two-Sample Hypotheses Tests. Two-sample tests are used 
to compare the means/medians of two populations, such as 
site versus background, surface versus subsurface soils, 
and upgradient versus downgradient wells. The two-sample 
hypotheses tests include: Student’s t-test, Wilcoxon Signed 
Rank test, Gehan test, and Tarone-Ware test. 

Multiple Populations. Other hypothesis tests are used to 
compare the means/medians of three or more populations, 
such as the spatial variability among multiple upgradient 
background wells. Tests to compare multiple populations 
include the one-way ANOVA and the Kruskal-Wallis test. 

Statistical Limits

Statistical limits, also known as statistical intervals, are used 
to quantify the uncertainty in the estimates of population 
parameters, e.g., mean concentration. These limits represent 
the upper and lower boundaries of the estimated parameter. 
There are three main types of statistical limits: confidence 
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limits, tolerance limits, and prediction limits. Both parametric 
and non-parametric methods are available to compute 
all of them. The presence of outliers will result in inflated 
upper limits; therefore, outliers should be excluded before 
the computation of these limits in order to avoid incorrect 
decisions. A confidence level must be pre-specified when 
constructing statistical limits. This level of confidence may 
be determined by federal or state regulatory requirements or 
guidance, or by project-specific needs, with the most common 
level set to 95%. These limits can be one-sided (i.e., just one 
of the upper or the lower) or two-sided (i.e., both upper and 
lower), but in most applications, interest lies in the upper limit, 
e.g., upper confidence limit. 

Confidence Limits. Confidence limits are typically 
constructed on a mean or median and are used to determine 
if concentrations are above or below a criterion, to estimate 
exposure point concentrations, and to calculate uncertainty 
associated with a slope (i.e., TS line or SLR line). It should 
be noted that only mean concentrations can be compared to 
these limits, i.e., not individual measurements.

Tolerance Limits. Tolerance limits are typically constructed 
on an upper percentile, e.g., 95th percentile, of a background 
data set to estimate a background threshold value. They 
can also be used to establish an alternate compliance limit. 
Individual site measurements can be compared to this limit. 

Prediction Limits. Prediction limits are constructed on a 
mean, or the ranking of measurements in a background data 
set and are also used to estimate a background threshold 
value. The difference between a prediction limit and the other 
limits is that it explicitly accounts for the comparison to a pre-
specified number of future observations. Therefore, it is wider 
than a confidence interval, but individual site measurements 
can be compared to this limit. 

Geospatial Methods

Geospatial methods are often used in combination with 
traditional statistical methods to address data that may be 
biased, clustered, or spatially correlated. More specifically, 
they are used to examine the spatial relationships between 
sample locations and provide a means of estimating (or 
interpolating) values at unsampled locations. For contaminated 
soil and groundwater sites, these methods are used for a 
variety of purposes: interpolation to create contour maps, hot 
spot detection, estimation of quantities (e.g., average site or 
background concentrations, mass/volumes, etc.), defining 
treatment zone footprint and depths, plume attenuation over 
time, monitoring program optimization, remedy performance, 
and verifying attainment of cleanup goals. Though these 
methods have a variety of applications, it is important that they 

be checked to ensure that the results are appropriate for, and 
consistent with, the conceptual site model. 

Geospatial methods range from simple methods, such as 
inverse distance weighting (IDW) and Thiessen polygons, 
to more advanced geostatistical methods, such as kriging. 
The simple methods use a deterministic model, i.e., does not 
include a statistical error component, and does not require 
any assumptions about the data other than spatial correlation 
exists. In contrast, kriging is a stochastic model, i.e., requires 
estimation of a statistical error component, and requires that 
a set of statistical assumptions are met. Regardless of the 
method, the quality of the model fit to the data should be 
evaluated using cross-validation or validation techniques and 
other goodness-of-fit metrics. 

A brief overview of a few of these methods is provided 
below. For more information, see ITRC’s web-based 
guidance document Geospatial Analysis for Optimization at 
Environmental Sites (ITRC, 2016), which provides a series 
of fact sheets on geospatial methods, a detailed overview of 
these methods, and various case studies demonstrating the 
applications of these methods.

Inverse Distance Weighted. IDW predicts a value at an 
unsampled location by calculating the distance-weighted 
average of neighboring data points within a specified window. 
IDW can be used for interpolation to create contour maps and 
grids used in surface and volume calculations. This method 
performs best with larger data sets collected at a high spatial 
density. IDW can produce contours with bullseye’s or mounds 
in the surface, so it is not well suited to contour groundwater 
elevations.

Thiessen Polygons. Thiessen polygons define the area of 
influence around each sample point. The area of each polygon 
and its corresponding data point is used to calculate an area-
weighted average value. Thiessen polygons are often used to 
calculate exposure point concentrations for exposure areas 
that have clustered and unevenly spaced sampling points. 
However, sample points in sparsely sampled regions will have 
a larger area of influence, which could lead to misleading 
estimates if that is not a practical assumption. 

Kriging. Kriging is a stochastic geostatistical method similar 
to IDW. It differs in that it assumes the spatial relation between 
interpolated values are dependent on observed values, 
which is modeled using a semivariogram. It also provides an 
estimate of the uncertainty in the interpolated values. Hence, 
both the interpolated values and their associated uncertainties 
can be mapped and used to evaluate the spatial distribution 
of contaminants. For example, these two maps can be used 
to delineate areas of contamination and to decide if further 
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sampling is needed, for example, in areas of low sampling 
density. These maps can also be used to determine whether 
site-wide concentrations are above or below a comparison 
value, e.g., regulatory limit or background values.

What are Some Examples of Emerging 
Statistical Methods?
Monte Carlo

Monte Carlo simulation is a statistical tool for analyzing the 
variability and uncertainty associated with estimates from a 
deterministic model, such as exposure risks and dense non-
aqueous phase liquid (DNAPL) mass estimates (see Figure 4). 
Monte Carlo methods allow for key input parameters to vary 
according to a known probability distribution, e.g., normal, 
lognormal, etc., as opposed to a single fixed value. A large 
number of realizations (hundreds or thousands) are generated 
from these probability distributions and the model is solved for 
each realization. The end result is a probability distribution of 
possible model outputs, as opposed to a single point estimate, 
that can be graphed and used to assess the mean and spread 
in model outputs and the probability of their occurrence. 

Figure 4. Schematic of Monte Carlo Simulation (Source: Geosyntec)

Multivariate Methods 

Groundwater and soil concentration data are inherently 
correlated; therefore, multivariate methods allow for the 
analysis of all variables simultaneously. By using these 
methods, these complex data sets can be explored for 
patterns and relationships that could be missed using the 
traditional univariate methods, i.e., variable by variable 
analysis, presented in the previous section. Two of the most 
common multivariate methods are described below. 

Hierarchical Cluster Analysis (HCA). HCA can identify 
common groups (i.e., clusters) within a large data set 
consisting of multiple contaminants across many samples. 
Samples are successively linked together in a dendrogram 
(hierarchal tree diagram, see Figure 5) based on increasing 
dissimilarity in contaminant distributions. This hierarchical 
method does not require the number of clusters to be 
specified beforehand, unlike other clustering methods, such 
as k-means. It is particularly useful when there is uncertainty 
whether there are patterns in the data that suggest a grouping 
structure. For example, clustering can be used to distinguish 
background data from site data based on the similarity of their 
chemical compositional patterns (i.e., patterns associated with 
background versus site-related releases). 

Figure 5. Example HCA Dendrogram (Source: Geosyntec)

Principal Component Analysis (PCA). PCA is used to 
summarize variation in a data set that consists of multiple 
correlated variables. PCA is also known as a data reduction 
technique because it reduces the number of variables by 
transforming them into smaller sets of uncorrelated variables 
without losing the most important information. These new 
variables correspond to a linear combination of the original 
variables and are called the principal components. The 
principal components can then be interpreted to better 
understand the processes or mechanisms driving the 
chemical compositions. For example, PCA can be applied to 
groundwater data sets to inform natural attenuation potential, 
degradation processes, and remediation strategies.



Case Study 1: Groundwater Statistics

The effectiveness of monitored natural attenuation (MNA) 
integrated with a large-scale pump-and-treat program as a 
remedial strategy was evaluated for multiple constituents of 
concern (COCs) at a site in Australia. The effectiveness of 
MNA was evaluated using statistical techniques to assess 
the natural attenuation behavior and quantify the dissolved 
phase degradation rate using data collected over a 12-year 
period between 2005 and 2017. Statistical analyses were 
conducted to evaluate the temporal and spatial trends (both 
lateral and vertical) of COC concentrations at the individual 
wells, as well as the dissolved phase mass in the plume by 
hydrostratigraphic layer (four in total). Temporal trends were 
evaluated using linear regression (assuming a first-order 
decay rate model), while spatial trends in COC concentrations 
and dissolved phase mass were evaluated using geostatistical 
methods (kriging). 

For each well and COC, time series plots were examined to 
identify increasing and decreasing trends, anomalous and 
outlying data, non-detect frequencies, changes in detection 
limits over time, and appropriate regression model (e.g., 
zero- versus first-order decay rate). During this process it 
was noted that in one area of the plume, a high-concentration 
slug of groundwater was migrating downgradient from the 

source area over time, which was reflected in the time trends 
as an initial increase followed by a decrease once the center 
of the slug passed each location. For these data sets, the 
assessment of the natural attenuation behavior was truncated 
to focus only on the timeframe during which attenuation could 
be clearly observed and was not over-shadowed by plume 
advection. 

For data sets that had statistically significant decreasing 
trends and met the model assumptions, attenuation rates and 
the half-lives were estimated using a first-order decay rate 
model. The estimated half-lives were then plotted on a map to 
evaluate the spatial distribution for each vertical layer of the 
model. Figure 6 shows the half-lives for ethylene dichloride 
(EDC). Plotting the spatial distribution of EDC half-lives 
provides insight into areas of the site where natural attenuation 
is effective at reducing mass (i.e., areas with a predominance 
of black [non-detect], blue or green symbols on Figure 6) 
as well as identifying areas where natural attenuation is less 
effective at reducing mass (i.e., areas with a predominance of 
red [no bulk attenuation or NBA], orange or purple symbols). 
Significant differences in attenuation were identified not only in 
different areas of the plumes (see red and black circled areas 
on Figure 6), but also vertically. Additionally, natural attenuation 
in the shallower intervals is progressing much faster than some 

Figure 6. Spatial Distribution of EDC Half-Lives by Layer (Source: Geosyntec)
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Note: Areas of the plumes with a predominance of orange, purple or red (no bulk attenuation; NBA) symbols indicate areas/
depths where persistence of high concentrations and slow attenuation is observed under natural conditions, even with ongoing 
pump-and-treat. Areas with a predominance of black (non-detect), blue or green symbols indicate areas/depths where natural 
attenuation combined with pump-and-treat is contributing significantly to reductions in plume concentrations/mass.



Figure 7. Temporal Changes in Maximum EDC Concentrations (Source: Geosyntec)

areas of the deeper layers, and the deeper interval of the toe 
of the plume has had little attenuation whereas attenuation 
has been observed even in upgradient DNAPL source areas 
(indicated as hatched areas on Figure 6). 

COC concentrations across the site were interpolated using a 
three-dimensional (3D) kriging model. Maximum interpolated 
concentrations across all depths were projected into plan view 
maps for every two-year time point between 2005 and 2017 
to evaluate the overall changes in the spatial distribution of 
COC concentrations over time (i.e., before and during remedy 
operation). Figure 7 shows the EDC trend maps at three time 
points. These maps illustrate the disappearance of EDC from 
the majority of the plume over time, and also highlight where 
concentrations are persisting in the source area and the toe 
of the plume. The 3D models were also used to estimate the 
dissolved phase mass in the plume over time. First-order 
decay rate models were used to calculate plume attenuation 
rates and quantify source decay behavior, which provided 
insight into overall plume lifespans and potential MNA 
timeframes. 

In summary, this case study highlights how multiple 
statistical methods can be incorporated into remedial 
strategy development and decision making. Understanding 
the spatial and temporal changes in attenuation behavior 
provides quantitative data to input into a cost-benefit analysis 
tool, where different remedial strategies can be evaluated, 
including continuing MNA, incorporating active remediation 
into areas of slower attenuation behavior to reduce plume 
lifespans, or active treatment over the entire plume. Each of 
these options requires remedial and monitoring durations to be 
estimated for generation of costs, which could be quantified 
through this statistical evaluation.

Case Study 2: Soil Statistics

The mass estimates of a primary COC in soils were evaluated 
for a confidential site. The potential uncertainty of mass 
estimates was evaluated using statistical methods to better 
understand the pre-remediation conditions and to provide 
a reference point that could be used to track remedial 
progress. The controlling factors for estimating COC mass 
in soils included the quantity of DNAPL mass and its spatial 
distribution. The distribution and range of parameters that 
influenced the COC mass estimates were evaluated using 
Monte Carlo methods, while the spatial distribution of soils 
representing DNAPL mass was estimated using spatial IDW. 

The presence of DNAPL was indicated by soil concentrations 
exceeding the DNAPL partitioning threshold, which was 
calculated based on chemical properties of the COC and 
the soil properties at the site, which are inherently uncertain 
and variable. Two parameters were selected to evaluate the 
uncertainty in the DNAPL partitioning threshold, which were 
assumed to follow a triangular distribution and have ranges 
based on either site-specific values or published ranges 
for geological units observed at the site. A total of 1,000 
realizations were generated from each distribution, and each 
one was used to calculate the DNAPL partitioning threshold 
concentration. The resulting distribution of 1,000 estimates 
of the DNAPL partitioning threshold concentration was then 
used to evaluate the uncertainty in the spatial distribution 
of the DNAPL mass.  COC concentrations across the study 
area were interpolated using a 3D IDW model. Several model 
options were evaluated by adjusting the key interpolation input 
parameters. These model options were evaluated using cross-
validation methods to evaluate model goodness-of-fit and 
prediction performance. 
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The final step of the analysis was to use the 3D interpolations 
and the distribution of DNAPL partitioning threshold 
concentrations to evaluate the uncertainty of the total COC 
mass in the soil. For each of the 1,000 realizations, the total 
interpolated soil volumes greater than and less than or equal 
to the DNAPL partitioning threshold concentration value 
were calculated. The soil volume greater than the DNAPL 
partition threshold concentration was used to calculate the 
total DNAPL mass, while the soil volume less than or equal 
to the DNAPL partition threshold concentration was used to 
calculate the total sorbed and aqueous phase mass. Figure 8 
shows the resulting distributions of the DNAPL mass, sorbed 
and aqueous phase mass, and total COC mass. These 
distributions were then used to understand the variability  

Figure 8. Distributions of Total DNAPL, Total Sorbed and Aqueous Phase, and Total COC Mass (Source: Geosyntec)

and uncertainty in the mass estimates and to define  
probable ranges in the mass estimates (mean and upper  
and lower bounds).

In summary, this case study highlights how statistical methods 
(Monte Carlo) and geospatial methods (IDW) can be used to 
quantify and evaluate the uncertainty of the contaminant mass 
in soils. Understanding the uncertainty in the mass estimates 
allows decision makers to effectively delineate the extent of 
contamination while reducing the cost for additional sampling. 
Future mass estimates will be derived using the same 
statistical approach during the remediation and  
post-remediation stages to track remedial progress  
towards meeting the remedial goal.
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