

Open Environmental Restoration Resource (OER2) Webinar

Environmental Background Analysis Review and Case Study of Apra Harbor Sediments, Naval Base Guam

Presented by: NAVFAC Environmental Restoration Program

Webinar: 7

Distribution Statement A: Approved for public release; distribution is unlimited.

POCs

- Kimberly.Markillie@navy.mil Presenter/Champion
- Tara.Meyers@navy.mil Moderator

Logistics

•Submit all questions via chat box throughout the presentation

Presentation is being recorded

•Complete the webinar survey (main feedback mechanism)

Disclaimer:

This seminar is intended to be informational and does not indicate endorsement of a particular product(s) or technology by the Department of Defense or NAVFAC EXWC, nor should the presentation be construed as reflecting the official policy or position of any of those Agencies. Mention of specific product names, vendors or source of information, trademarks, or manufacturers is for informational purposes only and does not constitute an endorsement or recommendation by the Department of Defense or NAVFAC EXWC. Although every attempt is made to provide reliable and accurate information, there is no warranty or representation as to the accuracy, adequacy, efficiency, or applicability of any product or technology discussed or mentioned during the seminar, including the suitability of any product or technology for a particular purpose.

Participation is voluntary and cannot be misconstrued as a new scope or growth of an existing scope under any contracts or task orders under NAVFAC

OER2 Webinar Series

•Why Attend?

- -Obtain and hear about the latest DOD and DON's policies/guidance, tools, technologies and practices to improve the ERP's efficiency
- -Promote innovation and share lessons learned
- -FEEDBACK to the ERP Leadership
- •Who Should Attend?
 - -ERP Community Members: RPMs, RTMs, Contractors, and other remediation practitioners who support and execute the ERP
 - -Voluntary participation
- Schedule and Registration:
 - -Every other month, 4th Wed (can be rescheduled due to holidays)
 - -Registration link for each topic (announced via ER T2 email)
- •Topics and Presenters:
 - -ERP community members to submit topics (non-marketing and DON ERPrelevant) to POCs (Gunarti Coghlan – gunarti.coghlan@navy.mil or Tara Meyers - tara.meyers@navy.mil)
 - -Selected topic will be assigned Champion to work with presenter

Speaker Introduction

Kim Markillie is currently the Quality Assurance Manager for NAVFAC Pacific and serves as the current sediment workgroup lead. Kim has provided input on many sediment remediation projects over the last 6 years at NAVFAC Pacific. Prior to accepting her current position, she was a consultant to the DOD for over 20 years. Her particular area of expertise is in Sediment Remediation.

She currently is managing the sediment remediation project at Pearl Harbor, HI and also managed the Apra Harbor remedial investigation in Guam.

Brian Nagy is an environmental scientist for AECOM with over 8 years of experience in environmental science and over 10 years of experience in academic research. Mr. Nagy has extensive analytical experience as a former quality assurance and operations manager of a full service DoD ELAP accredited environmental laboratory, and now is the deputy project manager on a number of Navy sediments projects.

Environmental Background Analysis Review and Case Study of Apra Harbor Sediments, Naval Base Guam

Kimberly Markillie, NAVFAC Pacific Brian Nagy, AECOM Wendell Wen, AECOM

Presentation Outline

- Navy and CERCLA Policy
 NAVFAC Guidance
- •Apra Harbor Case Study

Navy Policy

- Department of the Navy (DON). 2004. Navy Policy on the Use of Background Chemical Levels. Memo from Chief of Naval Operations, Environmental Protection, Safety, and Occupational Health Division, to: Commander, Naval Facilities Engineering Command. 5090, Ser. N45C/N4U732212. January 30.
 - Clarifies Navy policy on background chemicals in the Environmental Restoration Program
 - Emphasizes need to differentiate between background and siterelated chemicals

• Requirements:

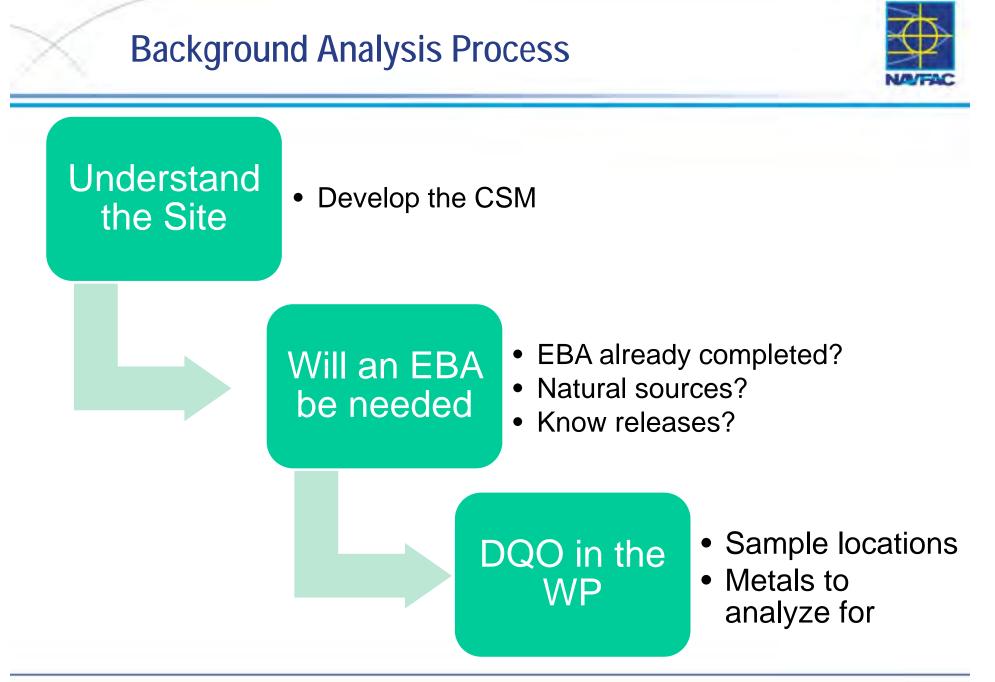
- Establish list of COPCs
- Eliminate background chemicals from the risk assessment but document the associated risks
- Don't set cleanup levels within background ranges

•CERCLA precludes cleaning up background levels of naturally occurring constituents:

"The President shall not provide for a removal or remediation action under this section in response to a release or threat of a release of a naturally occurring substance in its unaltered form, or altered solely through naturally occurring processes or phenomena, from a location where it is naturally found....." CERCLA [42 USC §9604(a)(3)(A)]

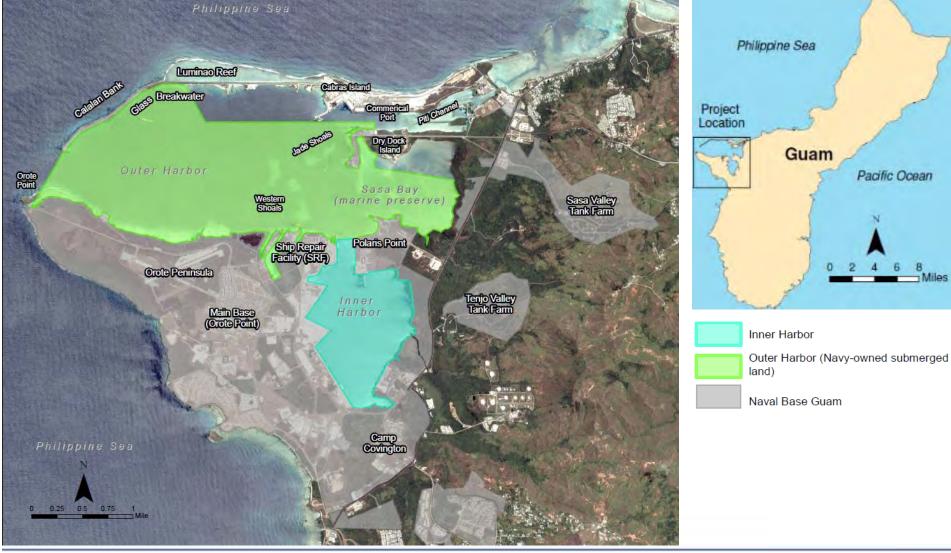
NAVFAC Background Guidance

- Sediment (Vol. II)
 - April 2003
 - Navy Policy on Sediment Site
 Investigation and Response Action
 - Comparative Method:
 Statistical Analysis
 - Geochemical Method:
 Sediment Chemistry


<u> </u>	
WFAC	NFESC User's Guide UG-2054-ENV
	R ENVIRONMENTAL
Volume	e II: Sediment
P	repared by
Eal	Memonal Institute th Tech, his wFields, his
5	April 2003
strand to been	passes, (Interaction & controlled

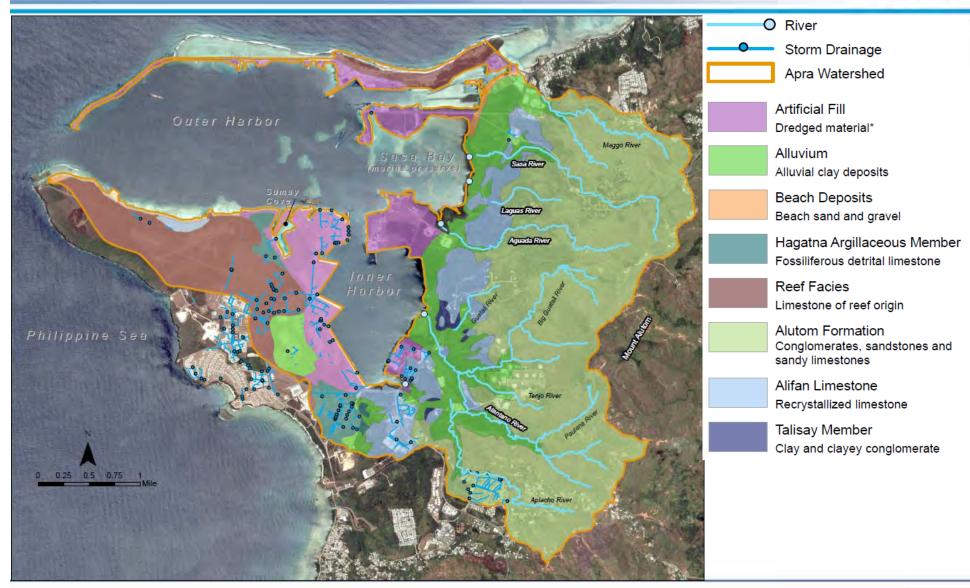
https://www.navfac.navy.mil/content/dam/navfac/Specialty%20Centers/Engineering%20and%20Expeditionary%20Warfare%20Center/Environmental/Restoration/er_pdfs/gpr/navfacesc-ev-ug-2054-env-bkgrd-seds-200304.pdf

- Differentiate concentrations representing a chemical release from concentrations representing background
- Identify site-specific chemicals of potential concern (COPCs) for human health and ecological risk assessments
- Select appropriate cleanup level

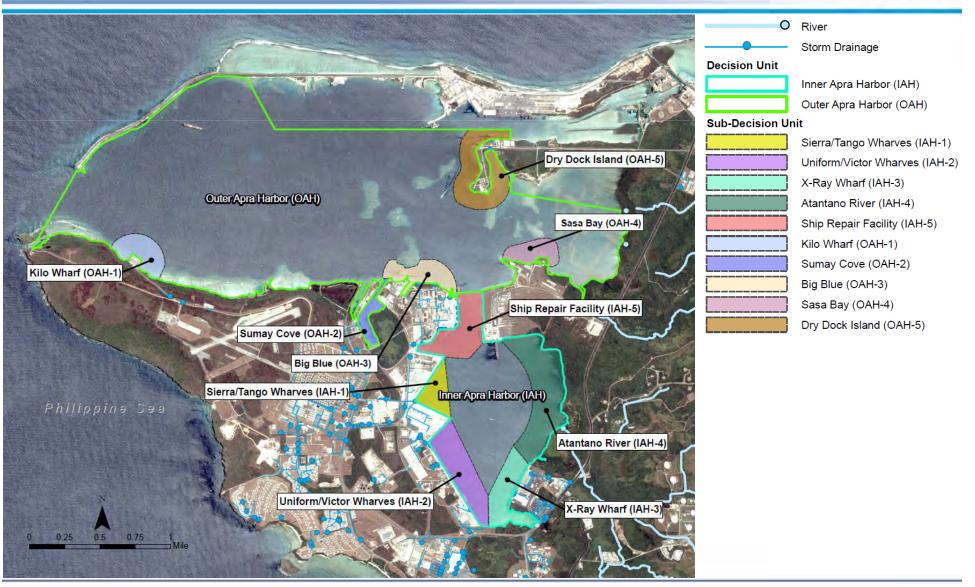


Philippine Sea Project Location Guam

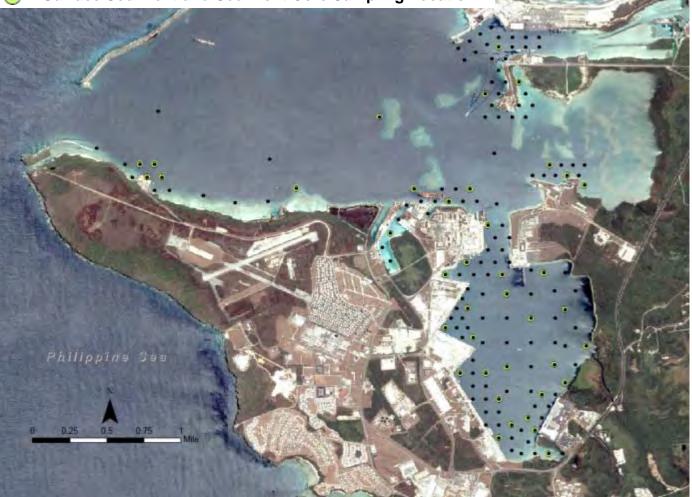
8


- Miles

Case Study: Apra Harbor, Naval Base Guam


Site Location: Geology and Watershed

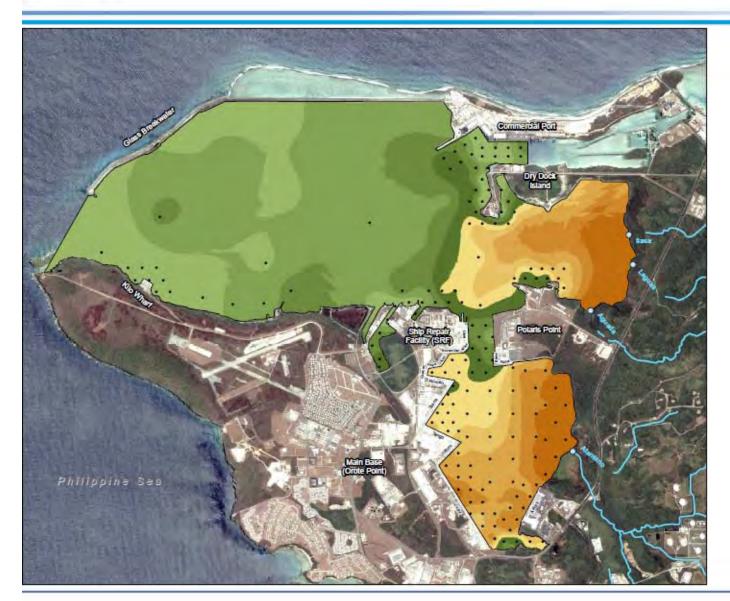
Site Location: Decision Units Associated with Potential Land Sources



Sediment Sampling Locations at Apra Harbor

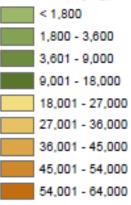
- Surface Sediment Sampling Location
- Surface Sediment and Sediment Core Sampling Location

- 178 Surface
 Sediment
 Samples
 - 93 Inner Harbor
 - 85 Outer Harbor
- 204 Subsurface Sediment Samples
 - 129 Inner Harbor
 - 75 Outer Harbor
- 382 samples
- 21 target metals
- 3 reference metals


- •Screening level exceedances observed in sediment
- Preliminary risk evaluation indicates risk from metals
- •Preliminary data evaluation suggests naturally occurring metals from streams
- •Follow Navy policy/guidance and EPA guidance to conduct an Environmental Background Analysis (EBA)

- •CSM (watershed, geology, streams, past activities)
- Data evaluation (guidance and exceedances)
- •Spatial distribution (maps and figures)
- •Combined univariate plot analysis (location, depth, qualifiers, particle size distribution, cumulative probability plot)
- •Geochemical association (correlation matrix, linear regression)
- •Multiple lines of evidence

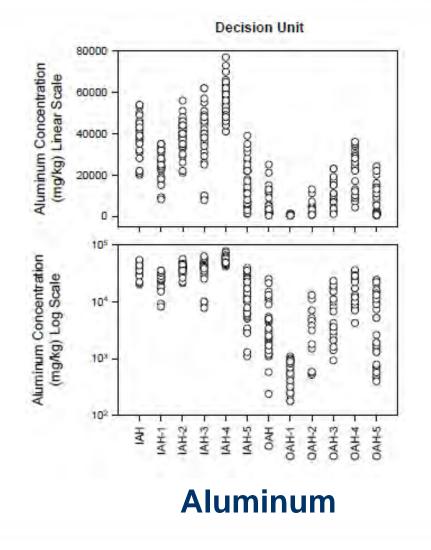
Spatial Distribution: Aluminum



O River

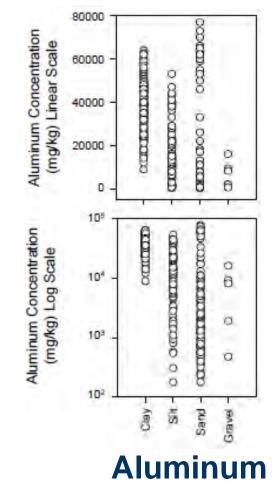
2014 Surface Sediment Sampling Location

with Detection Concentration


Aluminum (mg/kg)

Screening Level 18,000 mg/kg

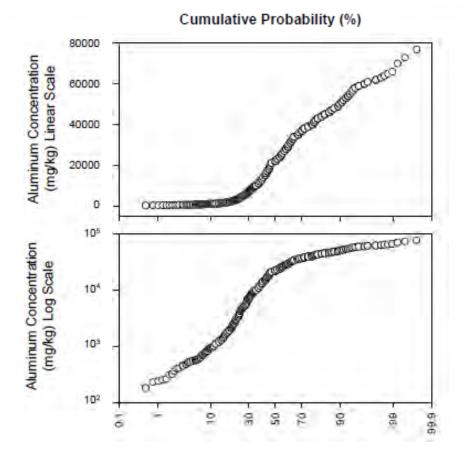
Spatial Distribution Plot



- Spatial Distribution Plot
 - Concentrations vary by location
 - Some locations expected to be mostly background
 - IAH-4
 - OAH-4
 - Some locations expected to have contamination
 - IAH-5

Sediment Type and Classification Plot

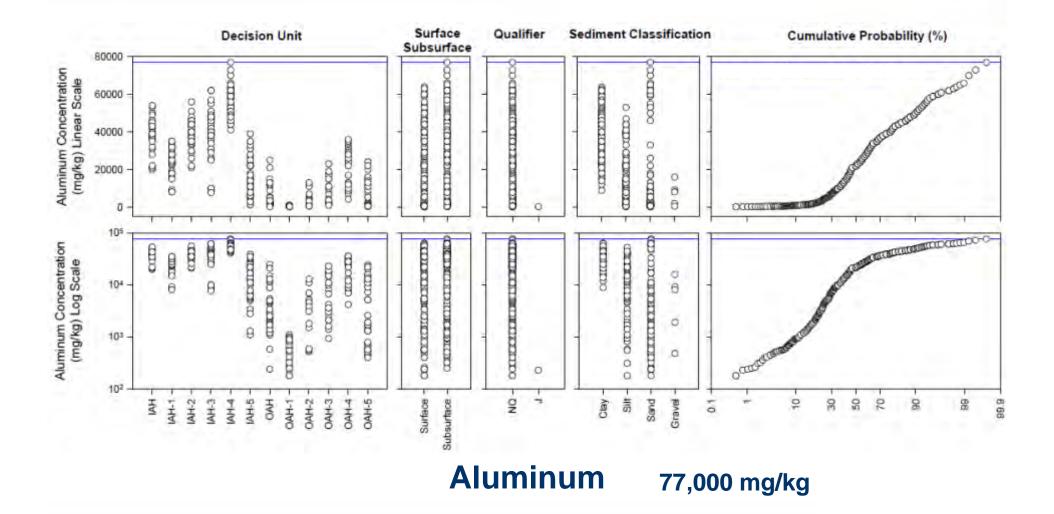
Sediment Classification



Sediment Classification

- Clay
- Silt
- Sand
- Gravel
- Naturally occurring metals tend to be enriched in clay due to surface area
- Contaminant releases can be anywhere

Cumulative Probability Plot

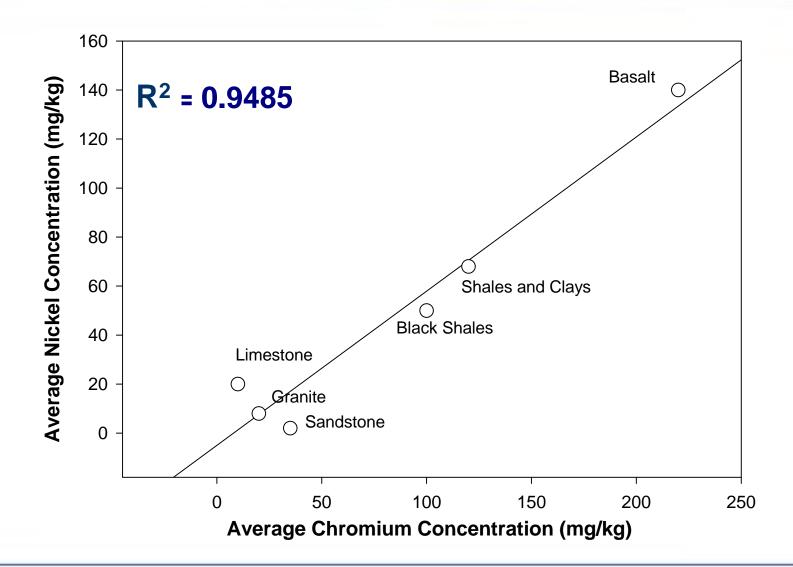

• Cumulative probability

- Normal distribution
- Log-normal distribution
- Inflection point shows possible "break" between naturally occurring concentrations and contaminate releases
- No observable inflection point indicates all background

Aluminum

Combined Univariate Plots

Association between Chromium and Nickel in Different Rocks


Chromium/nickel concentrations in different rocks

	Chro	mium	Nic	kel	Average Cr/Ni Concentration Ratio		
Name	Average	Range	Average	Range			
Basaltic igneous	220	40-600	140	45-410	1.6		
Granitic igneous	20	2-90	8	2-20	2.5		
Shales and clays	120	30-590	68	20-250	1.8		
Black shales	100	26-1,000	50	10-500	2.0		
Limestone	10	-	20	-	0.5		
Sandstone	35	-	2	\rightarrow	17.5		

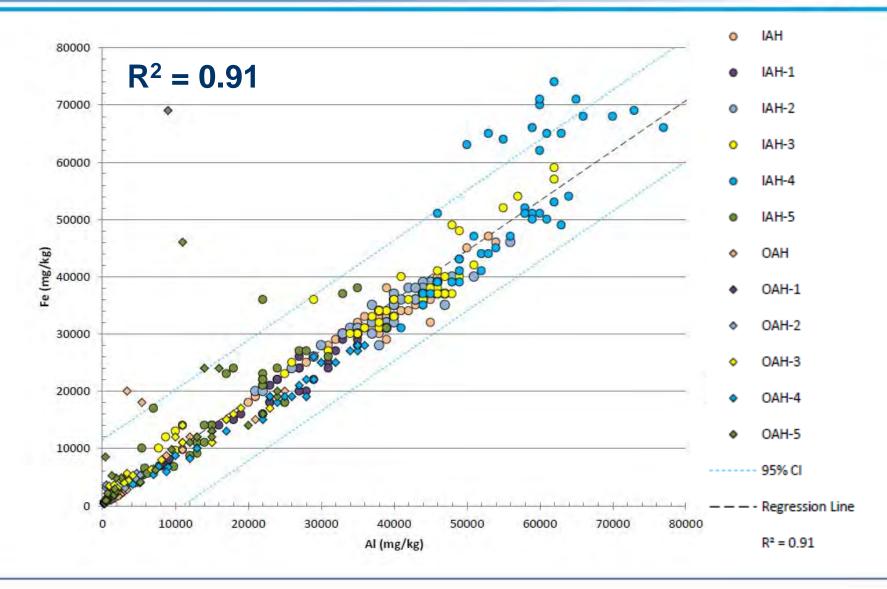
Source: Alloway (1990, Table 7-2).

From *Guidance for Env. Background Analysis: Soil,* Table A-10 (NAVFAC 2002)

Strong Association (R²) between Chromium and Nickel in Different Rocks

Geochemical Association Background

- •R (correlation coefficient)
- R² (coefficient of determination)
- Describe the population and identify possible outliers
- Confidence interval (95%)



Correlation Matrix – Apra Harbor Sediment

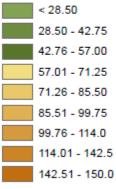
	1					1						_			-	-			-	_		_		
	AI	Sb	As	Ba	Be	Cd	Са	Cr	Со	Cu	Fe	Pb	Mg	Mn	Hg	Ni	K	Se	Ag	Na	TI	Sn	V	Zn
AI	1.00																							
Sb	0.00	1.00																						
As	0.63	0.28	1.00																					<u> </u>
Ва	0.18	0.36	0.02	1.00																				
Be	0.89	0.15	0.56	0.45	1.00																			
Cd	-0.05	0.50	0.09	0.20	-0.01	1.00																		ļ
Са	-0.02	-0.10	-0.57	-0.26	-0.88	-0.02	1.00																	L
Cr	0.14	0.33	0.12	0.32	0.31	0.09	-0.32	1.00																
Со	0.93	0.05	0.55	0.36	0.88	0.07	-0.90	0.18	1.00															<u> </u>
Cu	0.14	0.75	0.32	0.44	0.29	0.81	-0.24	0.36	0.22	1.00														<u> </u>
Fe	0.95	0.14	0.68	0.30	0.89	0.14	-0.92	0.20	0.97	0.33	1.00													
Pb	-0.02	0.70	0.17	0.38	0.14	0.79	-0.14	0.62	0.07	0.89	0.16	1.00												<u> </u>
Mg	0.77	0.10	0.47	0.18	0.72	0.07	-0.66	0.13	0.66	0.26	0.72	0.11	1.00											ļ
Mn	0.93	0.04	0.67	0.12	0.82	-0.01	-0.83	0.14	0.82	0.19	0.88	0.02	0.73	1.00										ļ
Hg	-0.01	0.65	0.21	0.26	0.08	0.78	-0.05	0.23	0.05	0.81	0.14	0.78	0.15	0.04	1.00									
Ni	0.83	0.26	0.56	0.51	0.96	0.06	-0.86	0.48	0.85	0.40	0.87	0.30	0.69	0.77	0.17	1.00								<u> </u>
K	0.98	-0.02	0.63	0.21	0.87	-0.05	-0.91	0.13	0.95	0.12	0.96	-0.04	0.73	0.89	-0.02	0.81	1.00							<u> </u>
Se	0.41	0.14	0.33	0.01	0.36	0.08	-0.30	0.04	0.29	0.16	0.36	0.10	0.39	0.46	0.14	0.32	0.38	1.00						<u> </u>
Ag	0.22	0.47	0.22	0.33	0.36	0.18	-0.23	0.26	0.21	0.43	0.26	0.38	0.27	0.24	0.38	0.40	0.17	0.21	1.00					<u> </u>
Na	0.86	0.00	0.64	-0.01	0.71	-0.04	-0.74	0.06	0.69	0.13	0.78	-0.02	0.74	0.88	0.03	0.64	0.84	0.42	0.15	1.00				<u> </u>
TI	0.39	0.36	0.35	0.06	0.38	0.06	-0.33	0.13	0.27	0.24	0.36	0.20	0.43	0.43	0.35	0.39	0.37	0.38	0.47	0.49	1.00			<u> </u>
Sn	0.09	0.64	0.26	0.26	0.14	0.92	-0.14	0.18	0.16	0.91	0.26	0.84	0.22	0.15	0.83	0.22	0.07	0.19	0.34	0.14	0.28	1.00		<u> </u>
V	0.98	0.01	0.61	0.24	0.90	-0.03	-0.92	0.15	0.96	0.16	0.97	-0.01	0.74	0.90	0.00	0.85	0.98	0.36	0.21	0.82	0.36	0.09	1.00	<u> </u>
Zn	-0.03	0.54	0.12	0.24	0.03	0.99	-0.06	0.21	0.09	0.85	0.16	0.85	0.09	0.01	0.78	0.12	-0.04	0.07	0.19	-0.03	0.04	0.93	-0.01	1.00

Iron vs. Aluminum: Geochemical Association

Multiple lines of evidence

- Data distribution with an understanding of the historical land use
- Spatial distribution as related to the geology and watershed
- -Combined plots
- -Geochemical association

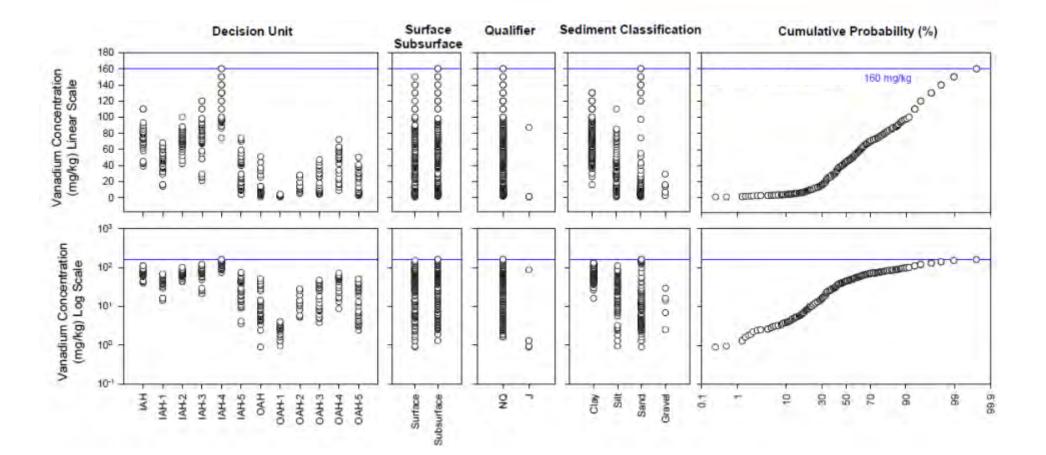
Vanadium: Spatial Distribution



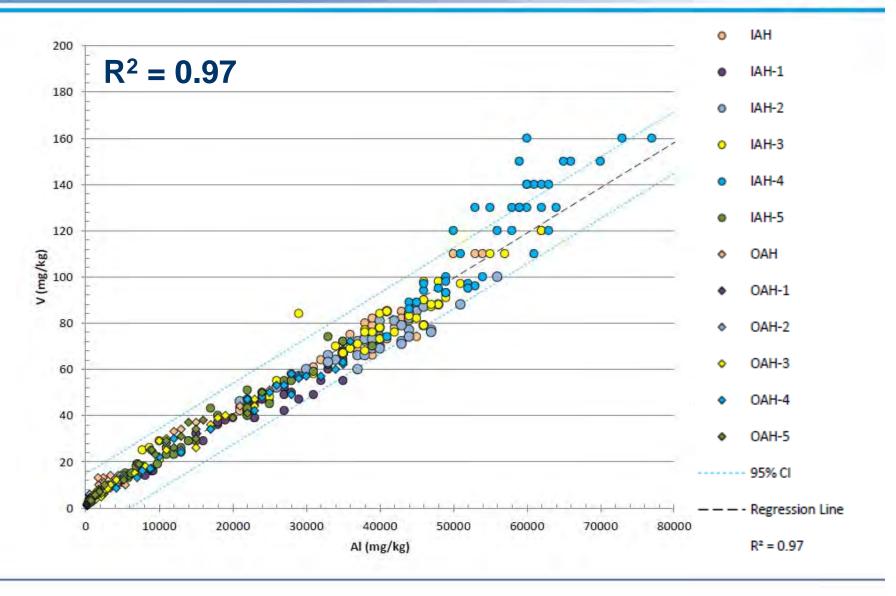
O-River

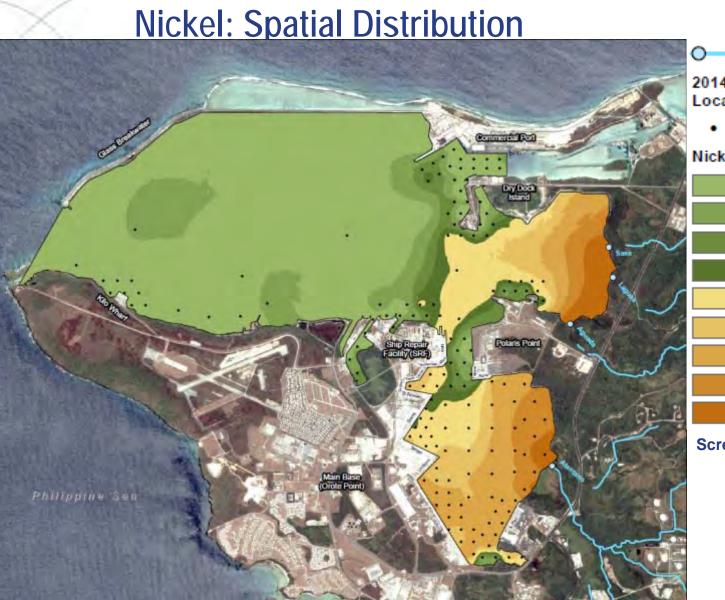
2014 Surface Sediment Sampling Location

with Detection Concentration

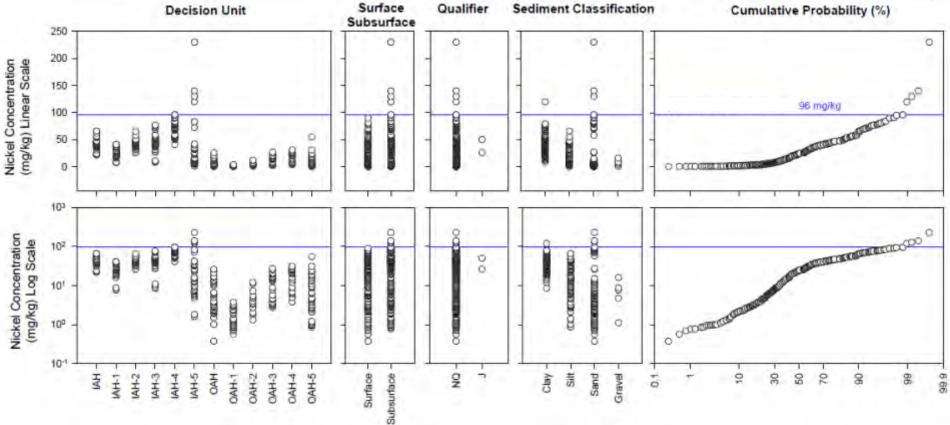


Screening Level 57 mg/kg

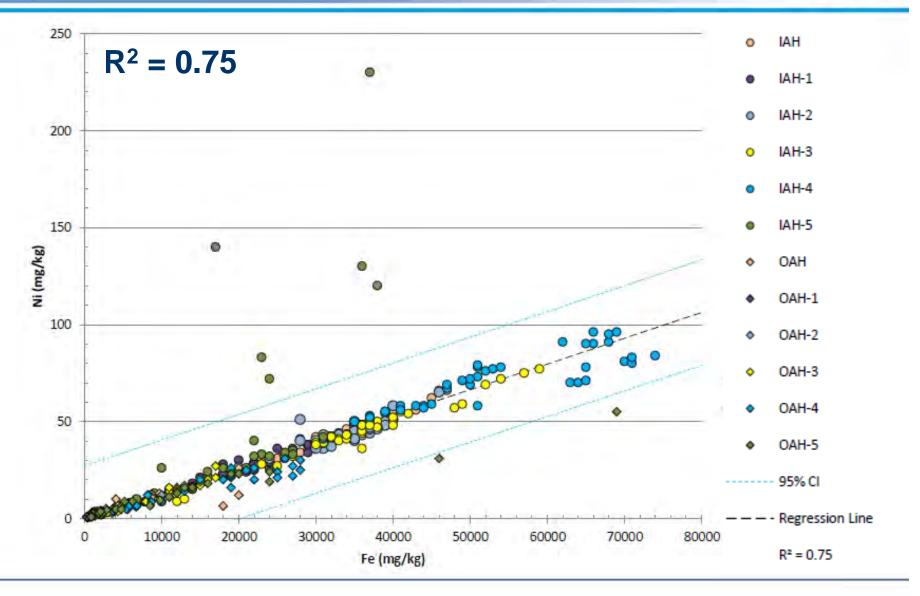

Vanadium: Univariate Plots

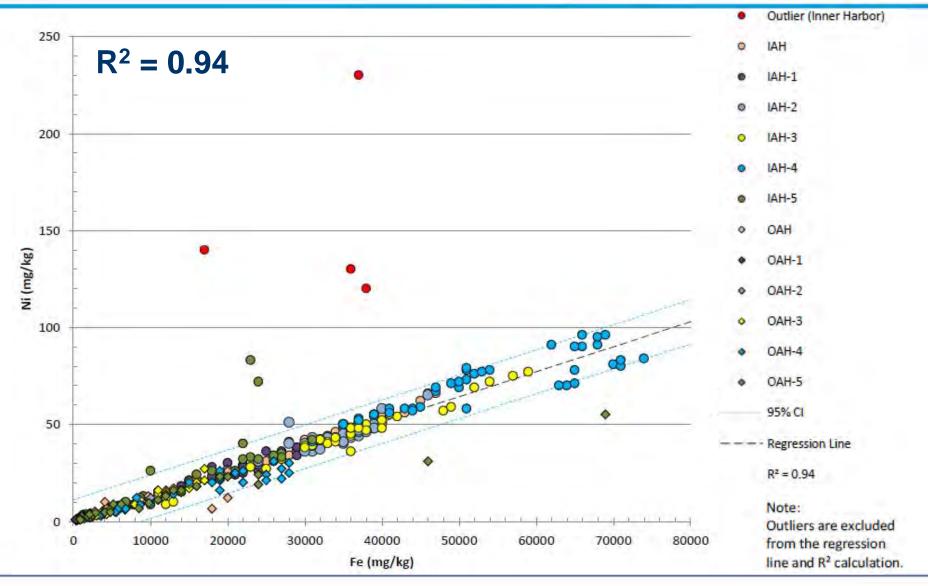


Vanadium vs. Aluminum: Geochemical Association



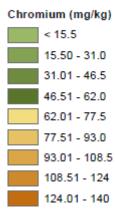
198	0	River							
6	2014 Surface Sediment Sampling Location								
A.	•	with Detection Concentration							
	Nickel (mg/kg)								
-/		< 5.23							
14		5.23 - 10.5							
		10.46 - 15.7							
		15.69 - 20.9							
5		20.91 - 31.4							
-		31.36 - 41.8							
\sim		41.81 - 62.7							
K		62.71 - 83.6							
i i		83.61 - 90.0							
1	Scree	ening Level 20.9 mg/kg							


Nickle: Univariate Plots


Nickel vs. Iron: Geochemical Association

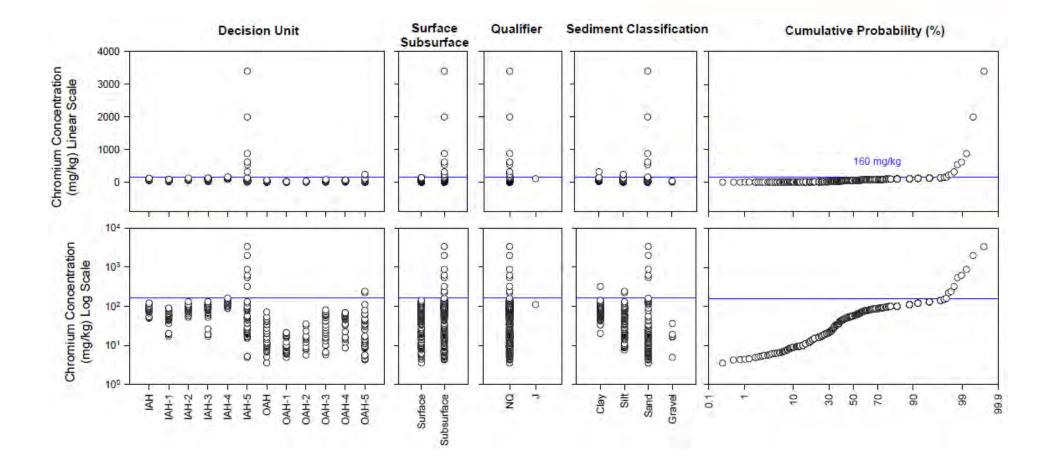
Nickel vs. Iron: Geochemical Association

Chromium: Spatial Distribution

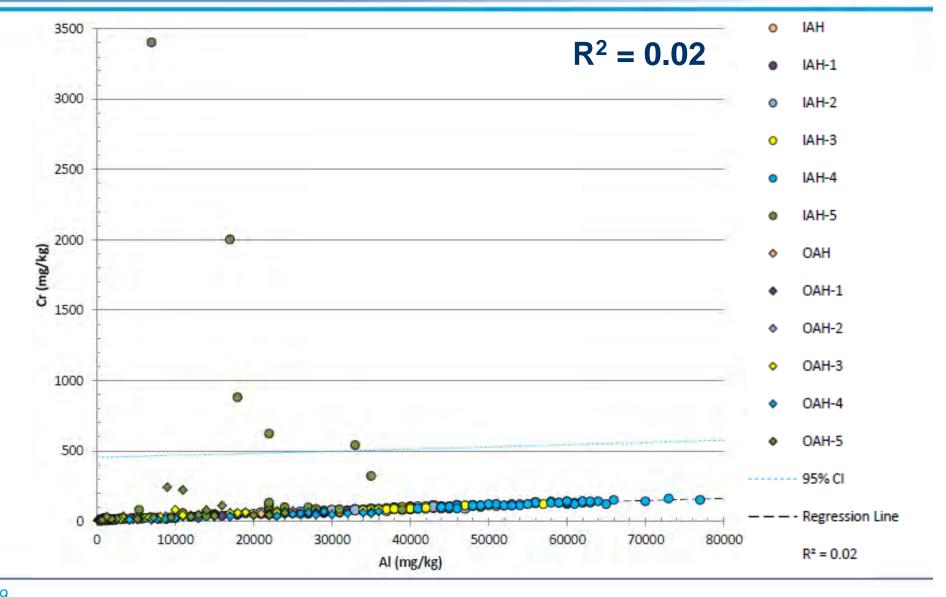


O River

2014 Surface Sediment Sampling Location


with Detection Concentration

Screening Level 62 mg/kg


Chromium: Univariate Plots


Chromium vs. Aluminum: Geochemical Association

Chromium vs. Aluminum: Geochemical Association

Background Estimate

		Background									
Target Constituent	EBA Dataset Range	Range (min–max)	Mode	MBC	95th Percentile	Recommended Background Concentration					
Aluminum (Al)	180–77,000	180-77,000	22,000	77,000	59,000	77,000					
Antimony (Sb)	0.16 J – 13	0.16-6.7	0.33	5.3	2.95	5.3					
Arsenic (As)	0.79–26	0.79–26	11	23	15	23					
Barium (Ba)	1.8–230	1.8–230	5.7	84	15	84					
Beryllium (Be)	0.014 J – 0.88	0.014-0.88	0.18	0.41	0.31	0.41					
Cadmium (Cd)	0.026 J – 26	0.026–26	0.11	1.2	0.43	1.2					
Calcium (Ca)	3,700-460,000	3,700-460,000	290,000	460,000	320,000	460,000					
Chromium (Cr)	3.5–3,400	3.5–3,400	110	160	130	160					
Cobalt (Co)	0.076 J – 41	0.076–41	12	41	25.1	41					
Copper (Cu)	0.52-1,300	0.52-1,300	36	100	91	100					
Iron (Fe)	300–74,000	300–74,000	36,000	74,000	53,950	74,000					
Lead (Pb)	0.24–1,100	0.24-1,100	31	60	46	60					
Magnesium (Mg)	2,900-25,000	2,900-25,000	18,000	25,000	22,000	25,000					
Manganese (Mn)	7.4–1,000	7.4–1,000	440	1,000	770	1,000					
Mercury (Hg)	0.011 J – 9	0.011–9	0.14	0.54	0.45	0.54					
Nickel (Ni)	0.37–230	0.37–230	48	96	76	96					
Potassium (K)	82 J – 7,000	82–7,000	2,900	7,000	4,800	7,000					
Selenium (Se)	0.069 J – 0.58	0.069-0.58	0.35	0.58	0.42	0.58					
Silver (Ag)	0.024 J – 1.2	0.024–1.2	0.11	0.61	0.36	0.61					
Sodium (Na)	3,900–30,000	3,900-30,000	16,000	30,000	25,000	30,000					
Thallium (TI)	0.051 J – 0.66	0.051-0.66	0.12	0.2	0.17	0.2					
Tin (Sn)	1.2 J – 86	1.2–86	1.9	15	7.2	15					
Vanadium (V)	0.892 J – 160	0.89–160	130	160	90.5	160					
Zinc (Zn)	1.1 J – 12,000	1.1–12,000	110	350	160	350					

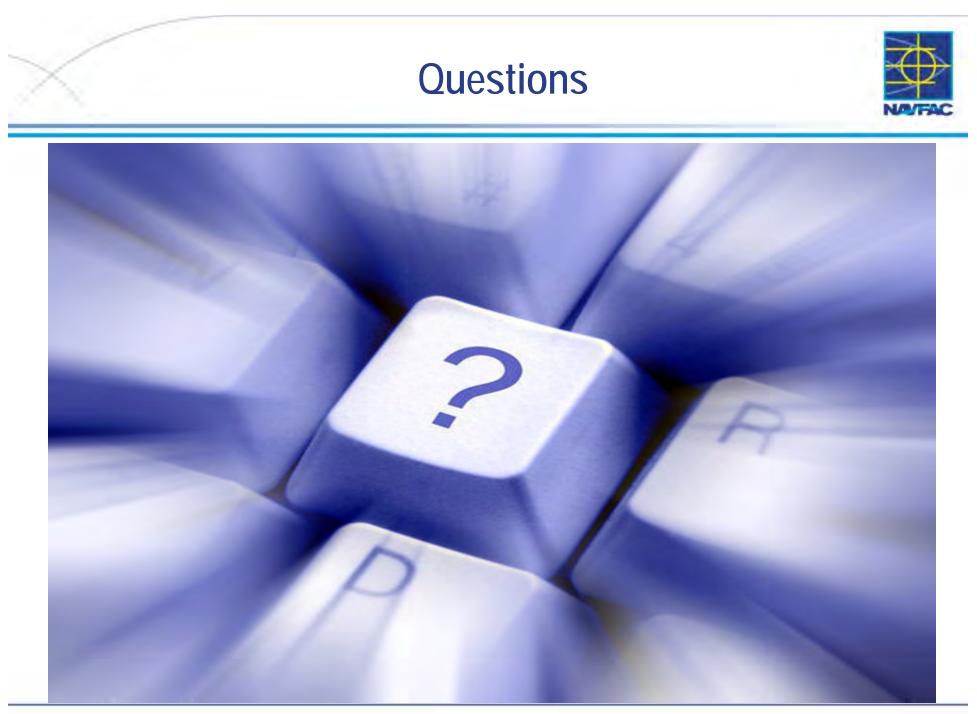
General

-NAVFAC Environmental Restoration and BRAC

https://www.navfac.navy.mil/navfac_worldwide/specialty_centers/exwc/products_and_services/ev/erb.html

Navy Policy and NAVFAC EBA Guidance

https://www.navfac.navy.mil/navfac_worldwide/specialty_centers/exwc/products_and_services/ev/erb/gpr.html


CSM Development

- Terrestrial/Groundwater

https://www.navfac.navy.mil/content/dam/navfac/Specialty%20Centers/Engineering%20and%20Expeditionary%20 Warfare%20Center/Environmental/Restoration/er_pdfs/c/navfacesc-ev-cklst-csm-terrestrial-20130114.pdf

- Sediment/Surface Water

https://www.navfac.navy.mil/content/dam/navfac/Specialty%20Centers/Engineering%20and%20Expeditionary%20 Warfare%20Center/Environmental/Restoration/er_pdfs/c/navfacesc-ev-cklst-csm-sediment-20130114.pdf

•Please complete the feedback questionnaire at the end of this webinar. We are counting on your feedback to make this webinar series relevant!

Next OER2 Webinar Info....

Title: Historical Radiological Assessments - The What, Why and How for Navy Remedial Project Managers Presenter: Jan Nielsen (NAVFAC LANT) Date: November 18th, 2015 Time: 11:00-12:00 PDT

•Thank you for participating!