

Open Environmental Restoration Resource (OER2) Webinar

Rehabilitation and Maintenance of Pump and Treat Systems

Presented by: NAVFAC Environmental Restoration Program

January 31, 2018

Logistics

•Submit all questions via chat box throughout the presentation

Presentation is being recorded

•Complete the webinar survey (main feedback mechanism)

Disclaimer:

This seminar is intended to be informational and does not indicate endorsement of a particular product(s) or technology by the Department of Defense or NAVFAC EXWC, nor should the presentation be construed as reflecting the official policy or position of any of those Agencies. Mention of specific product names, vendors or source of information, trademarks, or manufacturers is for informational purposes only and does not constitute an endorsement or recommendation by the Department of Defense or NAVFAC EXWC. Although every attempt is made to provide reliable and accurate information, there is no warranty or representation as to the accuracy, adequacy, efficiency, or applicability of any product or technology discussed or mentioned during the seminar, including the suitability of any product or technology for a particular purpose.

Participation is voluntary and cannot be misconstrued as a new scope or growth of an existing scope under any contracts or task orders under NAVFAC

Speaker Introduction

Jennifer Segura, P.E. – Environmental Engineer NAVFAC EXWC, Port Hueneme, CA

Experience in remediation and environmental compliance working for US Navy and private consulting. Focus areas include site characterization and monitoring, groundwater remediation, and remedy optimization. Has presented several remediation topics in various Navy and industry forums. Currently leading multiple ESTCP and NESDI projects on innovative technologies.

jennifer.segura@navy.mil

Speaker Introduction

Fred Payne, Ph.D. – Chief Scientist, Arcadis

35+ years in soil and groundwater restoration. Early focus on in-situ remediation technology development; current focus on aquifer structure and its impact on contaminant flux and remedy effectiveness.

Fred.Payne@arcadis.com

Jay Erickson, P.G. – Technical Expert, Arcadis

27+ years in remediation system design, operation and optimization. Mr. Erickson works on large, complex groundwater remediation systems that utilize multiple technologies. Additionally specializes in well rehabilitation and design.

Jay.Erickson@arcadis.com

OER2 Webinar Series

•Why Attend?

- -Obtain and hear about the latest DOD and DON's policies/guidance, tools, technologies and practices to improve the ERP's efficiency
- -Promote innovation and share lessons learned
- -FEEDBACK to the ERP Leadership
- •Who Should Attend?
 - -ERP Community Members: RPMs, RTMs, Contractors, and other remediation practitioners who support and execute the ERP
 - -Voluntary participation

Schedule and Registration:

- -Every other month, 4th Wed (can be rescheduled due to holidays)
- -Registration link for each topic (announced via ER T2 email)

•Topics and Presenters:

- -ERP community members to submit topics (non-marketing and DON ERPrelevant) to POCs (Gunarti Coghlan – gunarti.coghlan@navy.mil or Tara Meyers – tara.meyers@navy.mil)
- -Selected topic will be assigned Champion to work with presenter

Rehabilitation and Maintenance of Pump and Treat Systems

Jennifer Segura, P.E., NAVFAC EXWC Fred Payne, Ph.D., Arcadis Jay Erickson, P.G., Arcadis Navy Need

- Several legacy P&T Systems still functioning

- Most were installed in the 1990's (oldest system is the one at NIROP Fridley, installed 1992)
- Capturing plumes of TCE, PCE, cis-1,2 DCE, VC, as well as emerging contaminants like 1,2 DCA, RDX, 1,4 dioxane
- Most P&T systems continue to effectively capture and treat target contaminants

Breakdown of Annual O&M Costs for 11 P&T Systems (Data Source: NAVFAC) Navy Need

- Several legacy P&T Systems still functioning

- P&T systems included both injection wells and extraction wells
- Aging systems require periodic rehabilitation or replacement of wells/other components to avoid longer downtimes and loss of capture
- What are the best management practices (BMPs) that RPMs can use to get the most benefit out of and lower the cost of long-term O&M of P&T systems?

Production Well Construction and Maintenance Guide

https://www.navfac.navy.mil/content/dam/navfac/Specialty%20Centers/Engineering%20and%20Expeditiona ry%20Warfare%20Center/Environmental/Restoration/er_pdfs/p/navfacexwc-ev-fs-1708prodwellmaintenance-201704.pdf

- Are you currently managing or working at sites where P&T systems are installed?
 - Yes
 - No

- For those of you working with P&T systems have you had significant downtime in the in the last 2 years?
 - Yes

Poll # 2

- **No**
- Never worked with P&T systems before

• For P&T systems experiencing downtime, is the cause primarily due to:

- Well fouling or pump issues
- Aboveground treatment system fouling
- Mechanical/electrical breakdowns
- Other

Poll # 3

Never worked with P&T systems before

- For those of you who have been involved with P&T systems before, have you had to replace an extraction well in the last 2 to 3 years?
 - Yes

Poll # 4

- **No**
- Never worked with P&T systems before

1. Foundation – the importance of P&T system well maintenance, design and installation practices

- 2. Processes that reduce well performance
- 3. Tracking indicators and improving performance
- 4. Well maintenance methods
- 5. Case study examples
- 6. Key Tip for well installation
- 7. Importance of well development
- 8. Summary

Outline

Overview

• Maintenance programs:

- Closely monitor well performance
- Intervene to conduct maintenance before irreversible damage occurs
- Continuously meet remedy objectives
- Minimize project life-cycle costs

Replacement Well Designs:

- Focus on key installation QC elements
- Invest in well development
- Minimize project life-cycle costs

Well Maintenance Programs

Objective: To monitor performance and step in proactively to maintain well performance and avoid costly failures.

Three areas of focus:

- Processes that diminish well performance
- Performance tracking
- Deciding when to redevelop and rehabilitate

- Scaling
- Sanding
- Bio-fouling

Corrosion

- Calcium carbonate
- calcium sulfates
- iron oxides
- manganese oxides
- silica minerals

Forms on

- well screens
- pump impellers
- flow meters
- transducers
- level switches
- pipe surfaces
- treatment
 equipment

- Scaling
- Sanding
- Bio-fouling
- Corrosion

- sand
- silt
- formation mud
- drilling solids

- abrasion on parts
- fills wells
- particulates in discharge
- ground settlement

- Scaling
- Sanding
- Bio-fouling
- Corrosion

- Extra cellular polymers (ECP) "slimes" deposited by a wide variety of bacteria
- Prevalent at fringes or borders
- Bio-accumulation of organic molecules and metals
- associated with gas generation and corrosion

Clogs well screens, intakes, piping systems and components

- Scaling
- Sanding
- Bio-fouling
- Corrosion

- microbial based corrosion
- aggressive water
- dissimilar metals

Causes damage to

- screen
- casing
- piping
- equipment
- valves/fittings

- Increased electrical cost
- Increased O&M costs
- Failure to achieve remedial objectives
- Clogging or damage to downstream infrastructure
- Increased project life cycle cost and failure to meet projected timelines.

Bag filters

Distribution piping

Well collapse

- Leading indicators
 - Geochemistry
 - Biological residues
 - Produced sand
- Lagging indicators
 - Electricity consumption
 - Specific capacity (or Injectability)
 - Pump operation
 - Total depth

Well Chemistry and Biology – Leading Indicators

Bacterial indicators

- Sulfate reducers
- Iron bacteria
- Biofilm (slime) formation
- Physical indicators
 - Produced sand
- Chemical indicators
 - ATP an indirect bio indicator
 - Dissolved oxygen

Loss of Well Efficiency – A Lagging Indicator

G664

Performance Tracking Schedules

Maintenance Test	Testing Regime	Interval
Physical Inspection	Video Surface Equipment Subsurface Equipment	Initial & Rehab Events Quarterly or Each Visit Annually
Hydraulic Performance	Flow Rates Drawdown/Mounding Specific Capacity Pump Performance	Continuous Continuous Continuous Continuous
Electrical Performance	Voltage, Amps, Ohms, Phase	Weekly
Geochemistry	Inorganics	Quarterly
Biofouling	Fouling Deposits and Water	Quarterly
Rehabilitation	Well Cleaning or Treatment	At 90% of Expected Performance (based on continuous trend line)

Well Maintenance – Mechanical Cleaning

- **Brushing** knock off debris on inside of well, some surging benefit
- **Surging** swabs and double surge blocks – most effective method
- Jetting effective in more permeable formations, loosens materials, must be followed by surging, not used with slotted screen
- •Air Lifting good for debris removal

Other

ARCADIS

Well Maintenance – Chemical Additives

Chemical	Uses	
Acetic Acid	Biocide and biofilm dispersing, Fe/Mn oxides	
Sulfamic Acid	Scale removal, acid enhancement	
Phosphoric Acid	Scale removal, Fe/Mn oxides	
Hydrochloric Acid	Scale removal, Fe/Mn oxides	
Oxalic or Citric Acid	Chelating agents for Fe/Mn oxides	
Hydrogen Peroxide	Bioflim dispersing	
Chlorine	Disinfection	
Biocides	Kills bacterial colonies	
Polyphosphates	Sequestration agents	
Biodispersants	Bioflim dispersing	
Caustics	Oils, biofilms	
Mud Dispersants	Break down drilling fluids	

Extraction well case study

Injection Well Case Study

Opportunity for Improvement: Automating Maintenance

Replacement Well Design and Installation Practices

- Correct Well Designs:
 - Assure that remedy objectives are met
 - Minimize project lifecycle costs
- Successful Installations:
 - Closely follow specifications
 - Focus on effective well development

KEY POINT – Maximize Effective Well Diameter

Set Construction Specs and Supervise Construction to Achieve Plumb Wells

Plumb Well Case Example

- Site located in area of declining water levels due to drought
- Two 10-inch diameter production wells installed to depths of 400 feet – (gyroscopic survey part of scope)
- Six inch diameter pumps installed at 103 feet below top of casing
- Need to lower pumps due to lowering of the water table

Calculation of effective radius restricted pump depth to 180 feet in one well and 140 feet in the second well

Key Point: Submerged Screens

Well development:

- Repairs borehole damage, removes formation fines and drilling fluid, rearranges fluid pack
- Ensures effective connection between the well and aquifer formation

- 1. Develop action plans for existing wells and networks
- 2. Set up monitoring programs to track leading and lagging performance indicators
- 3. Set threshold criteria that trigger preventive well maintenance
- 4. Conduct the required maintenance as soon as threshold criteria give the indication

Summary – Replacement Well Design and Installation

- 1. Design with the purpose of the well in mind
- 2. Conduct appropriate filter pack/screen design
- 3. Set construction specs and closely supervise installation build plumb wells.
- 4. Design for submerged screens
- 5. Invest in well development
- 6. Set up tracking and maintenance from the beginning.
- 7. Include access for efficient well rehabilitation

Questions

Wrap Up

•Please complete the feedback questionnaire at the end of this webinar. We are counting on your feedback to make this webinar series relevant!

Next OER2 Webinar Info....

<u>Title:</u>

Presenter:

Date:

Time:

•Thank you for participating!